A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes.
نویسندگان
چکیده
For proteins to enter the secretory pathway, the membrane attachment site (M-site) on ribosomes must bind cotranslationally to the Sec61 complex present in the endoplasmic reticulum membrane. The signal recognition particle (SRP) and its receptor (SR) are required for targeting, and the nascent polypeptide associated complex (NAC) prevents inappropriate targeting of nonsecretory nascent chains. In the absence of NAC, any ribosome, regardless of the polypeptide being synthesized, binds to the endoplasmic reticulum membrane, and even nonsecretory proteins are translocated across the endoplasmic reticulum membrane. By occupying the M-site, NAC prevents all ribosome binding unless a signal peptide and SRP are present. The mechanism by which SRP overcomes the NAC block is unknown. We show that signal peptide-bound SRP occupies the M-site and therefore keeps it free of NAC. To expose the M-site and permit ribosome binding, SR can pull SRP away from the M-site without prior release of SRP from the signal peptide.
منابع مشابه
The two membrane segments of leader peptidase partition one by one into the lipid bilayer via a Sec/YidC interface.
We have addressed the mechanism of insertion of both transmembrane segments (TMs) of leader peptidase, a double-spanning protein, into the Escherichia coli inner membrane. Using photo-crosslinking, the first TM (H1) was shown to insert at a Sec-translocon/YidC interface in a fixed orientation. H1 lost its contacts with the Sec-translocon and gained access to lipids near YidC soon after complete...
متن کاملRegulation of ribosome detachment from the mammalian endoplasmic reticulum membrane.
In current models, protein translocation in the endoplasmic reticulum (ER) occurs in the context of two cycles, the signal recognition particle (SRP) cycle and the ribosome cycle. Both SRP and ribosomes bind to the ER membrane as a consequence of the targeting process of translocation. Whereas SRP release from the ER membrane is regulated by the GTPase activities of SRP and the SRP receptor, ri...
متن کاملRibosome-independent regulation of translocon composition and Sec61alpha conformation.
In this study, the contributions of membrane-bound ribosomes to the regulation of endoplasmic reticulum translocon composition and Sec61alpha conformation were examined. Following solubilization of rough microsomes (RM) with digitonin, ribosomes co-sedimented in complexes containing the translocon proteins Sec61alpha, ribophorin I, and TRAPalpha, and endoplasmic reticulum phospholipids. Complex...
متن کاملDissecting the physiological role of selective transmembrane-segment retention at the ER translocon.
The membrane integration of polytopic proteins is coordinated at the endoplasmic reticulum (ER) by the conserved Sec61 translocon, which facilitates the lateral release of transmembrane (TM) segments into the lipid phase during polypeptide translocation. Here we use a site-specific crosslinking strategy to study the membrane integration of a new model protein and show that the TM segments of th...
متن کاملEndoplasmic reticulum-bound ribosomes reside in stable association with the translocon following termination of protein synthesis.
In current views, translation-coupled ribosome binding to the endoplasmic reticulum (ER) membrane is transient, with association occurring via the signal recognition particle pathway and dissociation occurring upon the termination of protein synthesis. Recent studies indicate, however, that ribosomal subunits remain membrane-bound following the termination of protein synthesis. To define the me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 23 شماره
صفحات -
تاریخ انتشار 1998